153 research outputs found

    Constraints on genes shape long-term conservation of macro-synteny in metazoan genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many metazoan genomes conserve chromosome-scale gene linkage relationships (“macro-synteny”) from the common ancestor of multicellular animal life <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B2">2</abbr><abbr bid="B3">3</abbr><abbr bid="B4">4</abbr></abbrgrp>, but the biological explanation for this conservation is still unknown. Double cut and join (DCJ) is a simple, well-studied model of neutral genome evolution amenable to both simulation and mathematical analysis <abbrgrp><abbr bid="B5">5</abbr></abbrgrp>, but as we show here, it is not sufficent to explain long-term macro-synteny conservation.</p> <p>Results</p> <p>We examine a family of simple (one-parameter) extensions of DCJ to identify models and choices of parameters consistent with the levels of macro- and micro-synteny conservation observed among animal genomes. Our software implements a flexible strategy for incorporating genomic context into the DCJ model to incorporate various types of genomic context (“DCJ-[C]”), and is available as open source software from <url>http://github.com/putnamlab/dcj-c</url>.</p> <p>Conclusions</p> <p>A simple model of genome evolution, in which DCJ moves are allowed only if they maintain chromosomal linkage among a set of constrained genes, can simultaneously account for the level of macro-synteny conservation and for correlated conservation among multiple pairs of species. Simulations under this model indicate that a constraint on approximately 7% of metazoan genes is sufficient to constrain genome rearrangement to an average rate of 25 inversions and 1.7 translocations per million years.</p

    Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication

    Get PDF
    Horseshoe crabs are marine arthropods with a fossil record extending back approximately 450 million years. They exhibit remarkable morphological stability over their long evolutionary history, retaining a number of ancestral arthropod traits, and are often cited as examples of "living fossils." As arthropods, they belong to the Ecdysozoa}, an ancient super-phylum whose sequenced genomes (including insects and nematodes) have thus far shown more divergence from the ancestral pattern of eumetazoan genome organization than cnidarians, deuterostomes, and lophotrochozoans. However, much of ecdysozoan diversity remains unrepresented in comparative genomic analyses. Here we use a new strategy of combined de novo assembly and genetic mapping to examine the chromosome-scale genome organization of the Atlantic horseshoe crab Limulus polyphemus. We constructed a genetic linkage map of this 2.7 Gbp genome by sequencing the nuclear DNA of 34 wild-collected, full-sibling embryos and their parents at a mean redundancy of 1.1x per sample. The map includes 84,307 sequence markers and 5,775 candidate conserved protein coding genes. Comparison to other metazoan genomes shows that the L. polyphemus genome preserves ancestral bilaterian linkage groups, and that a common ancestor of modern horseshoe crabs underwent one or more ancient whole genome duplications (WGDs) ~ 300 MYA, followed by extensive chromosome fusion

    Evolutionary profiling reveals the heterogeneous origins of classes of human disease genes: implications for modeling disease genetics in animals

    Get PDF
    Background: The recent expansion of whole-genome sequence data available from diverse animal lineages provides an opportunity to investigate the evolutionary origins of specific classes of human disease genes. Previous studies have observed that human disease genes are of particularly ancient origin. While this suggests that many animal species have the potential to serve as feasible models for research on genes responsible for human disease, it is unclear whether this pattern has meaningful implications and whether it prevails for every class of human disease. Results: We used a comparative genomics approach encompassing a broad phylogenetic range of animals with sequenced genomes to determine the evolutionary patterns exhibited by human genes associated with different classes of disease. Our results support previous claims that most human disease genes are of ancient origin but, more importantly, we also demonstrate that several specific disease classes have a significantly large proportion of genes that emerged relatively recently within the metazoans and/or vertebrates. An independent assessment of the synonymous to non-synonymous substitution rates of human disease genes found in mammals reveals that disease classes that arose more recently also display unexpected rates of purifying selection between their mammalian and human counterparts. Conclusions: Our results reveal the heterogeneity underlying the evolutionary origins of (and selective pressures on) different classes of human disease genes. For example, some disease gene classes appear to be of uncommonly recent (i.e., vertebrate-specific) origin and, as a whole, have been evolving at a faster rate within mammals than the majority of disease classes having more ancient origins. The novel patterns that we have identified may provide new insight into cases where studies using traditional animal models were unable to produce results that translated to humans. Conversely, we note that the larger set of disease classes do have ancient origins, suggesting that many non-traditional animal models have the potential to be useful for studying many human disease genes. Taken together, these findings emphasize why model organism selection should be done on a disease-by-disease basis, with evolutionary profiles in mind

    The amphioxus genome and the evolution of the chordate karyotype

    Get PDF
    Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approx520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution

    Deeply conserved synteny resolves early events in vertebrate evolution

    Get PDF
    Although it is widely believed that early vertebrate evolution was shaped by ancient whole-genome duplications, the number, timing and mechanism of these events remain elusive. Here, we infer the history of vertebrates through genomic comparisons with a new chromosome-scale sequence of the invertebrate chordate amphioxus. We show how the karyotypes of amphioxus and diverse vertebrates are derived from 17 ancestral chordate linkage groups (and 19 ancestral bilaterian groups) by fusion, rearrangement and duplication. We resolve two distinct ancient duplications based on patterns of chromosomal conserved synteny. All extant vertebrates share the first duplication, which occurred in the mid/late Cambrian by autotetraploidization (that is, direct genome doubling). In contrast, the second duplication is found only in jawed vertebrates and occurred in the mid-late Ordovician by allotetraploidization (that is, genome duplication following interspecific hybridization) from two now-extinct progenitors. This complex genomic history parallels the diversification of vertebrate lineages in the fossil record

    Reciprocity as a foundation of financial economics

    Get PDF
    This paper argues that the subsistence of the fundamental theorem of contemporary financial mathematics is the ethical concept ‘reciprocity’. The argument is based on identifying an equivalence between the contemporary, and ostensibly ‘value neutral’, Fundamental Theory of Asset Pricing with theories of mathematical probability that emerged in the seventeenth century in the context of the ethical assessment of commercial contracts in a framework of Aristotelian ethics. This observation, the main claim of the paper, is justified on the basis of results from the Ultimatum Game and is analysed within a framework of Pragmatic philosophy. The analysis leads to the explanatory hypothesis that markets are centres of communicative action with reciprocity as a rule of discourse. The purpose of the paper is to reorientate financial economics to emphasise the objectives of cooperation and social cohesion and to this end, we offer specific policy advice

    Noncomparabilities & Non Standard Logics

    Get PDF
    Many normative theories set forth in the welfare economics, distributive justice and cognate literatures posit noncomparabilities or incommensurabilities between magnitudes of various kinds. In some cases these gaps are predicated on metaphysical claims, in others upon epistemic claims, and in still others upon political-moral claims. I show that in all such cases they are best given formal expression in nonstandard logics that reject bivalence, excluded middle, or both. I do so by reference to an illustrative case study: a contradiction known to beset John Rawls\u27s selection and characterization of primary goods as the proper distribuendum in any distributively just society. The contradiction is avoided only by reformulating Rawls\u27s claims in a nonstandard form, which form happens also to cohere quite attractively with Rawls\u27s intuitive argumentation on behalf of his claims

    Identifying and Characterizing a Novel Protein Kinase STK35L1 and Deciphering Its Orthologs and Close-Homologs in Vertebrates

    Get PDF
    The human kinome containing 478 eukaryotic protein kinases has over 100 uncharacterized kinases with unknown substrates and biological functions. The Ser/Thr kinase 35 (STK35, Clik1) is a member of the NKF 4 (New Kinase Family 4) in the kinome with unknown substrates and biological functions. Various high throughput studies indicate that STK35 could be involved in various human diseases such as colorectal cancer and malaria. In this study, we found that the previously published coding sequence of the STK35 gene is incomplete. The newly identified sequence of the STK35 gene codes for a protein of 534 amino acids with a N-terminal elongation of 133 amino acids. It has been designated as STK35L (STK35 long). Since it is the first of further homologous kinases we termed it as STK35L1. The STK35L1 protein (58 kDa on SDS-PAGE), but not STK35 (44 kDa), was found to be expressed in all human cells studied (endothelial cells, HeLa, and HEK cells) and was down-regulated after silencing with specific siRNA. EGFP-STK35L1 was localized in the nucleus and the nucleolus. By combining syntenic and gene structure pattern data and homology searches, two further STK35L1 homologs, STK35L2 (previously known as PDIK1L) and STK35L3, were found. All these protein kinase homologs were conserved throughout the vertebrates. The STK35L3 gene was specifically lost during placental mammalian evolution. Using comparative genomics, we have identified orthologous sets of these three protein kinases genes and their possible ancestor gene in two sea squirt genomes. We found the full-length coding sequence of the STK35 gene and termed it as STK35L1. We identified a new third STK35-like gene, STK35L3, in vertebrates and a possible ancestor gene in sea squirt genome. This study will provide a comprehensive platform to explore the role of STK35L kinases in cell functions and human diseases
    corecore